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Hydrocarbon bridged metal complexes
XLV. Dinuclear polyene-bridged Fischer carbene complexes and a
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Abstract

Condensation of carotinoid polyene dialdehydes, 1,1%-ferrocene dialdehydes and of 9-ferrocenyl-2,7-dimethylnonatetraenal with
the Fischer carbene complexes (OC)5W�C(NMe2)CH2SiMe3 or (OC)5M�C(Me)(OMe) (M�Cr, W) in the presence of n-BuLi or
SiMe3Cl/NEt3 yields the bis(carbene) complexes 1–4 and the donor acceptor substituted complexes 5, 6. The star-shaped
trinuclear molecules 7 and 8 were obtained under Wittig conditions from 1,3,5-tris[(triphenylphosphonio)methyl]benzene tribro-
mide and ferrocene aldehyde or 9-ferrocenyl-2,7-dimethyl-nonatetraenal. © 1999 Elsevier Science S.A. All rights reserved.
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The interest in symmetrical bimetallic or hetero
bimetallic complexes with electron conducting hydro-
carbon bridges is growing rapidly due to their potential
applications in material science (e.g. compounds with
metal-metal-communication [2a] or for non-linear op-
tics [2b]). Several methods to introduce Fischer type
carbene complexes into p-systems have been described
[3]. Coupling reactions of (OC)5Cr�C(OMe)CH2Li with
CuI- or AgI-salts and subsequent oxidation of the
formed s–C–C-bond led to symmetrical polyene
bridged bis(carbene) complexes [4,5]. In many cases
reactions of dilithiated aromatic precursors with
M(CO)6 (M�Cr, W) lead to symmetrical bis(carbene)
complexes [6]. Also formation of m-bis(aminocarbene)
dimetal complexes of chromium and iron by reaction of

tertiary diamides and Cr(CO)5
2− and Fe(CO)4

2− in the
presence of chlorotrimethylsilane was reported [7]. Pho-
tolysis reactions of W(CO)6 with dialkynol derivates
provide bis(aminocarbene) complexes [8]. Metathesis
reactions of polyenes with Schrock-type metal carbenes
yielded symmetrical bis(carbene) complexes [9]. Conju-
gated polyene bis(carbene) complexes were also synthe-
sized by oxidation of diiron–carbon-s-bound
compounds [10] or from a chromium Fischer carbene
complex and tetrachlorocyclopropene [11]. Oxidation of
acetylide bridged complexes gave a series of interesting
bis(carbene) compounds M�C�C�(C)n�C�C�M [12,
3b,c]. Other bimetallic complexes with p-conjugated
carbon chains contain metal-carbene, metal-carbyne
and C�C bonds [13].

Another approach to synthesize polyene bridged bis-
(carbene) complexes is the use of polyene dialdehydes as
precursors. Aumann [14] and Macomber [15] developed

� For part XLIV see Ref. [1].
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synthetic routes which allow condensation of aldehyde
groups with the methyl group of the Fischer carbene
complex. In continuation of our studies on polyene
bridged Schiff base complexes [16] and of Fischer bis-
(carbene) complexes with conjugated C�C-bonds [5] we
used slightly modified techniques of Aumann [14] and
Macomber [15] for the synthesis of symmetrical
bimetallic bis(carbene) complexes and of trinuclear bis-
(carbene) complexes of the form LmM�C(R)–Cconj–
M%–Cconj–(R)C�MLm (M�W, M%�Fe, R�OMe, NMe2),
which are rare [13a].

Several star-shaped trimetallic acetylene bridged
complexes have been described [17,18] where the elec-
tronic metal–metal interaction was of interest. We syn-
thesized two new star-shaped ferrocene containing
polyene bridged trimetallic complexes using Wittig
conditions.

1. Results and discussion

The bis(carbene) complexes 1 and 2 were obtained by
a two step reaction, beginning with the reaction of
(OC)5W�C(NMe2)CH2SiMe3 with n-BuLi in THF at
−78°C. Then the dialdehydes 2,7-dimethyloctatriene-
dial and crocetine dialdehyde were added to the result-
ing solution. Subsequent purification by
chromatography lead to the orange or red air sensitive
products. To our knowledge complex 2 is the longest
polyene bridged bis(carbene) complex up to date. Use
of 1,1%-ferrocene dialdehyde as aldehyde component
leads to formation of the symmetrical p-bridged trinu-
clear bis(carbene) complex 3. The complexes 4–6 were
obtained by one pot reactions of (OC)5M�C(OMe)CH3

(M�Cr, W) with 9-ferrocenyl-2,7-dimethyl-nonatetrae-
nal [19] or 1,1%-ferrocene dialdehyde and NEt3/Me3-
SiCl in diethyl ether. The complexes were isolated in
moderate yields after purification by column chro-
matography as air sensitive black microcrystalline prod-
ucts.

In the infrared spectra the A1–CO-absorptions of 1-6
are shifted to lower wavenumbers due to the electron
pushing effect of the polyene ligands. This effect
is marked for the methoxy substituted complexes
4, 5 and 6 with shifts of 13, 10 and 13 cm−1 compared
to 5 cm−1 for 1, 2 and 3, since the (OC)5M�C(OMe)
complex fragment is a better electron acceptor than
its NMe2 substituted analogue. The NMR spectra of
the complexes 1–4 are very simple due to the high
symmetry of the molecules. For example, the 13C-NMR
spectrum of 1 only shows five resonances for the
olefinic carbon atoms. Unexpectedly in the 1H-NMR
spectra the Cp protons of 3 and 4 appear as singu-
letts.

Furthermore, we synthesized new olefin bridged com-
plexes combining the cyclopentadienylring of ferrocene
with polyene systems. The synthesis of the complexes 7
and 8 was achieved by Wittig reactions of fer-
rocenemonoaldehyde and 9-ferrocenyl-2,7-di-methyl-
nonatetraenal [19] with 1,3,5-tris[(triphenylphos-
phonio)methyl]benzene tribromide [20]. The products
were purified by column chromatography and were
obtained as cis/trans isomers with rates of 2:3 for 7 and
1:2 for 8. These mixtures could not be separated.
Probably all possible isomer combinations (e.g. cis,
trans, trans ; cis, cis, trans etc.) were present. 7 and 8
were characterized by NMR and mass spectra. Hopes
that the metal centers would electronically communi-
cate with each other were not fulfilled. Cyclovoltam-
metric studies of 7 and 8 showed only one redox wave
for both compounds (for 7: redoxpotential=530 mV,
CH2Cl2, nBu4NPF6, scan rate 50 mV s−1, ferrocene as
internal reference, 440 mV). A single step oxidation
process which implies that the iron centres do not
electronically communicate with each other over the
benzene bridge was also observed for 1,3,5-tris(ferro-
cenyl-ethynyl)benzene [17a]. However significant elec-
tronic communication between the metal centres was
observed, e.g. for [(Cp*)(dppe)Fe(C�C–)]3(1,3,5-C6H3)
[18a] and for [(Cp)(Ph3P)2Ru(C�C–)]3(1,3,5-C6H3)
[18b].
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2. Experimental

All operations were carried out under nitrogen using
Schlenk techniques. Solvents were dried by distillation
from sodium/benzophenone or calcium hydride. NMR
spectra: Jeol GSX 270 (1H: 270.17 MHz; 13C: 67.94
MHz; 31P: 109.38 MHz) or Jeol EX 400 (1H: 399.78
MHz; 13C: 100.53 MHz). -IR: Perkin-Elmer 841, Nico-
let 520 FT-IR.-UV/vis Philips PU 8710. Since the de-
scribed compounds had to be purified by column
chromatography the yields are moderate.

2.1. General procedure for the synthesis of the
complexes 1–3

An equimolar amount of n-BuLi (1.6 M in hexane) is
added dropwise to a solution of (OC)5W�C(N-
(CH3)2)CH2Si(CH3)3 [14] in 15 ml of THF at −78°C.
After stirring for 1 h 0.5 equivalents of the aldehyde
compound are added. After stirring for 1.5 h at −78°C
the mixture is warmed up to room temperature and the
solvent is evaporated in vacuo. The crude residue is
dissolved in a minimum of dichloromethane and
purified by chromatography using a silica gel column
(20×2 cm) with n-pentane/dichloromethane (4:1) as
eluent. The second band yields an oily product after
evaporation. Stirring in n-pentane at −20°C and cen-
trifugation gives fine powders.

2.1.1. Reaction of 2,7-dimethyl-octatriene-dial with
(OC)5W�C(N(CH3)2)CH2Si(CH3)3

1: Orange powder; yield 110 mg (24%). -IR (KBr,
cm−1): ñ(CO)=2059 m (A1), 1972 w (sh) (B1), 1931 s
(sh), 1902 versus (E).-1H-NMR (400 MHz, CDCl3):
d6.64 (dd, 2H, H3,6.), 6.58 (d, 2H, 3J=16.1, H2,7.),
6.27–6.25 (m, 2H, H4,5.), 5.81 (d, 2H, 3J=15.6, H1,8.),
3.81 (s, 6H, NCH3), 3.38 (s, 6H, NCH3), 1.95 (s, 6H,
CH3).-13C-NMR: (67.8 MHz, CDCl3) d252.19 (W�C),
203.56 (COeq), 198.53 (COax),137.78, 134.89, 134.34,
130.43, 129.84 (Colef.),53.56, 44.14 (N(CH3)2), 12.55
(CH3).-UV/vis (CH2Cl2, nm, lg o): lmax=397 (5.06),
431 sh (4.99).-C28H26N2O10W2 (918.1): Calc. C 36.62, H
2.85, N 3.05; Found C 36.46, H 3.25, N 2.76.

2.1.2. Reaction of crocetinedial with
(OC)5W�C(N(CH3)2)CH2Si(CH3)3

2: Red powder; yield 50 mg (20%).-IR (KBr, cm−1):
ñ(CO)=2059 s (A1), 1967 m (B1), 1908 versus br (E).-
1H-NMR (270 MHz, CDCl3) d6.71–6.54 (m, 6H,
Holef.), 6.41 (d, 2H, 3J=15.1, Holef.), 6.31–6.18 (m, 4H,
Holef.), 5.85 (d, 2H, 3J=15.8, Holef.), 3.82 (s, 6H,
NCH3), 3.39 (s, 6H, NCH3), 1.99–1.95 (m, 12H, CH3).
-UV/vis (CH2Cl2, nm, lg o): lmax=461 (4.92), 576 sh
(4.02). –C38H38N2O10W2 (1050.3): Calc. C 43.45, H
3.64, N 2.66; Found C 44.47, H 4.41, N 2.07. A
molecular ion could not be detected in the FAB MS.

2.1.3. Reaction of 1,1 %-ferrocene-dialdehyde with
(OC)5W�C(N(CH3)2)CH2Si(CH3)3

3: Orange powder; yield 100 mg (40%). -IR (KBr,
cm−1): ñ(CO)=2059 m (A1), 1971 w (B1), 1903 versus
(E). -1H-NMR (400 MHz, CDCl3) d6.67 (d, 1H, 3J=
16.2, Holef.), 6.06 (d, 1H, 3J=16.3, Holef.), 4.39 (s, 8H,
C5H4), 3.81 (s, 6H, NCH3), 3.35 (s, 6H, NCH3). -UV/
vis (CH2Cl2, nm, lg o): lmax=333.4 (4.13), 365.2 (4.01),
476.4 (3.17).-C30H24FeN2O10W2 (996.0): Calc. C 36.17,
H 2.43, N 2.81; Found C 36.23, H 2.34, N 2.61.

2.2. General procedure for the synthesis of the
complexes 4–6

A total of 0.3 mmol of (OC)5M�C(OCH3)CH3

(M�Cr, W) and 0.3 mmol (for 4: 0.15 mmol) of the
aldehyde component are combined with 150 ml Me3SiCl
and 200 ml NEt3 in 10 ml diethylether. The Schlenk
tube is closed with a glass cap and stirred gently for
3–5 d. The mixture is then centrifugated, and after
separation of the precipitate the solvent is evaporated
in vacuo. The residue is dissolved in a minimum of
toluene, and chromatographed using a silica gel column
(30×2 cm) with n-pentane until all unreacted
(OC)5M�C(OCH3)CH3 is removed. The polarity of the
mobile phase is slowly increased up to n-pentane/di-
ethylether (4:1). The second fractions (purple) contain
the products, which are dried after removing the sol-
vent in vacuo.
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2.2.1. Reaction of 1,1 %-ferrocene-dialdehyde with
(OC)5W�C(OCH3)CH3

4: Dark red powder; yield 100 mg (18%). -IR (KBr,
cm−1): ñ(CO)=2061 s (A1), 1980 w (B1), 1913 versus
(E). -1H-NMR (400 MHz, CDCl3) d7.40 (d, 1H, 3J=
15.0, Holef.), 7.22 (d, 1H, 3J=15.5, Holef.), 4.60 (s, 8H,
C5H4), 4.56 (s, 6H, OCH3). -UV/vis (CH2Cl2, nm, lg o):
lmax=347.6 (4.65), 445.6 (4.57), 565.4 (4.30).
–C28H18FeO12W2 (969.7) Calc. C 34.67, H 1.87; Found
C 35.05, H 2.12.

2.2.2. Reaction of 9-ferrocenyl-2,7-dimethyl-nona-
tetraenal [18] and (OC)5Cr�C(OCH3)CH3

5: Black powder; yield 25 mg (14%). -IR (KBr,
cm−1): ñ(CO)=2054 m (A1), 1986 s (B1), 1944 s (E).
-1H-NMR (400 MHz, CDCl3) d7.38 (d, 1H, 3J=14.7,
H8), 6.91-6.84 (m, 2H, H5,7), 6.74-6.65 (m, 2H, H3,4),
6.53 (d, 1H, 3J=15.8, H2), 6.49 (d, 1H, 3J=15.8, H1),
6.29 (d, 1H, 3J=11.6, H6), 4.71 (s, 3H, OCH3), 4.44 (t,
2H, C5H4), 4.32 (t, 2H, C5H4), 4.13 (s, 5H, C5H5), 2.04/
1.97 (each s, each 3H, CH3). -13C-NMR (100 MHz,
CDCl3) d217.36 (CO), 145.52, 140.41, 138.0, 135.81,
133.91, 130.76, 129.98, 129.30, 128.45 (Colef.), 83.24,
69.51, 65.70 (C5H4), 69.39 (C5H5), 67.06 (OCH3), 12.86,
12.37 (CH3). –C29H26CrFeO6 (578.3) Calc. C 60.17, H
4.52; Found C 59.31, H 4.30.

2.2.3. Reaction of 9-ferrocenyl-2,7-dimethyl-nona-
tetraenal [18] with (OC)5W�C(OCH3)CH3

6: Black powder; yield 50 mg (23%). -IR (KBr,
cm−1): ñ(CO)=2061 s (A1), 1976 w (B1), 1921 versus
(E). -1H-NMR (400 MHz, CDCl3) d7.31 (d, 1H, 3J=
14.4, H8), 7.08 (d, 1H, 3J=14.4, H7), 6.93 (dd, 1H,
3J=14.0, 3J=11.8, H5), 6.78 (d, 1H, 3J=11.9, H3),
6.66 (dd, 1H, 3J=14.0, 3J=12.1, H4), 6.52 (s, 2H,
H1,2), 6.28 (d, 1H, 3J=11.8, H6), 4.57 (s, 3H, OCH3),
4.44 (t, 2H, C5H4), 4.33 (t, 2H, C5H4), 4.14 (s, 5H,
C5H5), 2.03, 2.00 (each s, each 3H, CH3). 13C-NMR
(67.8 MHz, CDCl3) d302.89 (W�C), 204.30 (COeq),
198.16 (t, 1J=63.6, COax), 145.45, 142.03, 141.36,
140.59, 136.12, 134.19, 130.85, 130.15, 129.46, 128.68
(Colef.), 83.23,69.53, 67.05 (C5H4), 69.39 (C5H5), 68.40
(OCH3), 12.89, 12.30 (CH3).-C29H26FeO6W (710.3):
Calc. C 49.20, H 3.41; Found C 50.05, H 4.13.

2.2.4. Reaction of 1,3,5-{tris-[(triphenylphos-
phonio)methyl]}-benzene tribromide [19] with FcCHO
under Wittig conditions

7: 800 mg (0.69 mmol) of 1,3,5-tris-[(triphenylphos-
phonio)methyl]-benzene tribromide were suspended in
15 ml of diethylether at −78°C. 1.38 ml (2.2 mmol) of
n-BuLi (1.6 M in hexane) was added dropwise. Then
the mixture was warmed up to room temperature. After
4 h the resulting deep red suspension was conveyed into
a drop funnel and slowly added to a solution of 443 mg
(2.1 mmol) of ferrocenemonoaldehyde. After stirring

over night and evaporation of the solvent, the residue
was chromatographed on a silica gel column with
CH2Cl2 as eluent. The first fraction contained the
product. The solvent was evaporated and the crude
product was dried in vacuo.

Red powder; yield 200 mg (0.28 mmol) 41%. 1H-
NMR (400 MHz, CDCl3): d7.31 (s, 3H, C6H3), 6.81 (d,
2H, 3J=16.2, Htrans), 6.62 (d, 2H, 3J=16.2, Htrans),
6.39 (d, 1H, 3J=11.9, Hcis), 6.30 (d, 1H, 3J=11.9,
Hcis), 4.46 (t, 4H, C5H4-trans), 4.28 (t, 4H, C5H4-trans),
4.26 (t, 2H, C5H4-cis), 4.20 (t, 2H, C5H4-cis), 4.17–4.13
(m, 15H, C5H5). MS (FAB, mNBA) m/z (%)=
708(6.9)[M]+. –C42H36Fe3 (708.22): Calc. C 71.22, H
5.12; Found C 71.22, H 5.31.

2.2.5. Reaction of 1,3,5-tris[(triphenylphosphonio)-
methyl]-benzene tribromide with 9-ferrocenyl-2,7-
dimethylnonatetraenal [18] under Wittig conditions

8: The same reaction procedure as described for 7
was carried out. Dark red powder; yield 80 mg (36%).
1H-NMR (400 MHz, CDCl3): d7.38 (s, 3H, C6H3), 6.96
(d, 3H, 3J=16.2, Htrans), 6.72–6.28 (m, 21H, Holef),
4.47–4.42 (m, 6H, C5H4), 4.32–4.28 (m, 6H, C5H4),
4.16–4.13 (m, 15H, C5H5), 2.07, 2.05 (s, jew. 9H, CH3).
MS (FAB, mNBA) m/z(%)=1105(1.1)[M]+.
–C72H72Fe3 (1104.7): Calc. C 78.27, H 6.56; Found C
77.60, H 6.93.
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[7] M. Havránek, M. Husák, D. Dvorák, Organometallics 14 (1995)
5024.

[8] (a) V. Péron, E. Porhiel, V. Ferrand, H. Le Bozec, J. Organomet.
Chem. 539 (1997) 201. (b) C. Cosset, I. Del Rio, H. Le Bozec
Organometallics 14 (1995) 1938.

[9] H.H. Fox, J.-K. Lee, L.Y. Park, R.R. Schrock, Organometallics
12 (1993) 759.

[10] B.A. Etzenhouser, M. DiBiase Cavanaugh, H.N. Spurgeon,
M.B. Sponsler, J. Am. Chem. Soc. 116 (1994) 2221. B.A. Etzen-
houser, Q. Chen. M.B. Sponsler, Organometallics 13 (1994)
4176.

[11] R. Aumann, B. Jasper, R. Fröhlich, S. Kotila, J. Organomet.
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